# Complex numbers: an introduction

We will leave the domain of real numbers behind us and start exploring the plane of complex numbers. An introduction to a realm beyond imagination. Continue reading Complex numbers: an introduction

# Heisenberg’s uncertainty principle

Heisenberg’s uncertainty principle is famous in quantum mechanics. However, it doesn’t have its roots in quantum mechanics. Let’s look at Fourier transform pairs. Continue reading Heisenberg’s uncertainty principle

# Lab centrifuges and prime numbers

Lab centrifuges are crucial in e.g. coronavirus research. It’s vital the test tubes are balanced. There is an easy method to know if that’s possible. Continue reading Lab centrifuges and prime numbers

# Why do wet clothes dry?

We discuss the second law of thermodynamics, the notion of entropy, the statistical nature of the situation, and why wet clothes dry. Continue reading Why do wet clothes dry?

# What is a spacetime interval?

Einstein and collaborators taught us that space and time are not fixed quantities. They can stretch and contract. They vary. There is one thing, though, that does not vary. It is the invariance of the spacetime interval. Continue reading What is a spacetime interval?

# Deriving the Lorentz transformations from a rotation of frames of reference about their origin with real time Wick-rotated to imaginary time

Well-known for their central role in Einstein’s Special Relativity, the Lorentz transformations are derived from the rotation of two frames of reference in standard configuration while time is taken to be an imaginary unit of spacetime. This is rarely seen in the wild. Not many undergraduate textbooks or online texts show the details of the working. Hence, this article. Continue reading Deriving the Lorentz transformations from a rotation of frames of reference about their origin with real time Wick-rotated to imaginary time